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Based on recent work �C. J. Tessone, C. R. Mirasso, R. Toral, and J. D. Gunton, Phys. Rev. Lett. 97, 194101
�2006��, the study of coupled bistable oscillators with different sources of diversity is extended. Effects of the
correlation between the diversity on the resonant response of the system are discussed. It is found that the
diversity of the coupled system, in the form of quenched noise, can induce a resonant effect in response to
external signals. The resonance is reduced and even disappears as the correlation length between the diversity
increases, while the spatial synchronization is enhanced due to the correlation between the diversity.
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I. INTRODUCTION

In the last decades, stochastic resonance has been inves-
tigated extensively due to its potential applications �1–6�. It
is well known that the noise in the system has a constructive
role on stochastic resonance. The response of the system to
an external signal may show a resonantlike behavior at an
optimal noise strength. In recent years, the investigation of
stochastic resonance was extended to the coupled oscillator
system. For example, Lindner et al. �7� found the phenom-
enon of array-enhanced stochastic resonance �AESR� in a
coupled system. Zhou et al. �8� found the array-enhanced
coherence resonance �AECR� in an array of coupled
FitzHugh-Nagumo neruons.

Recently, Tessone et al. �9� pointed out that the right
amount of diversity, in the form of quenched noise, can in-
duce a resonant collective behavior in an ensemble of N
globally coupled bistable systems. The independent diversity
with different sources between the coupled oscillators can
play a constructive role on the resonant response of the
coupled system to an external periodic force. However, in
certain situations the diversity may have a common origin
and then may be correlated �10–15�. Therefore, the effects of
the correlation between the diversity on the behavior of the
system need to be further investigated.

In this paper, the phenomena of diversity-induced reso-
nance in an array of coupled bistable oscillators are investi-
gated when there exists mutual correlation in the diversity
parameter. In Sec. II, the dynamical model of the coupled
bistable system with correlated diversity is presented. In Sec.
III, the effects of the correlation � between the diversity and
the coupling c between different oscillators on the resonant
response and the spatial synchronization of the coupled sys-
tem are discussed. A discussion concludes the paper.

II. DYNAMICAL MODEL

The ensemble of N coupled bistable oscillators with cor-
related diversity can be written as follows:

ẋi�t� = xi�t� − xi
3�t� + ai + A sin��t� +

c

N
�
j=1

N

�xj�t� − xi�t�� ,

�1�

where A is the amplitude of the external periodic signal, �
=2� /T is the frequency of the signal, and c is the coupling
strength between oscillators. The parameter ai is assumed to
take short-range correlated diversity with the following sta-
tistical properties:

�ai� = 0, �aiaj� = g��i − j�� ,

g��i − j�� = g�0�exp	−
�i − j�2

2�2 
 , �2�

g�0� =
�

��2�
, �3�

where � is the diversity and � is correlation of the diversity
between a pair of elements. In the limit of �→0, it is pos-
sible to recover the independent diversity shown in Ref. �9�.
ai are Gaussian variables and the correlation functions of ai
depend on the distance �i− j� between the sites in a one-
dimensional space. For each lattice point i, the diversity pa-
rameter ai takes a different value, but constant in time. The
actual algorithm for the generation of the correlated variables
is presented in the Appendix.

III. EFFECTS OF CORRELATION BETWEEN DIVERSITY
ON DIVERSITY-INDUCED RESONANCE

To investigate the response of the periodically driven
system, the spectral amplification factor �9� �
=4A−2��ei�tX�t���2 is calculated, where X�t�= 1

N�i=1
N xi�t� is the

average position of the oscillators at time t. The spectral
amplification factor can provide a precise amount of the in-
formation in the signal transported with a particular forcing
period.

The spectral amplification factor � is plotted in Fig. 1 as a
function of the diversity � and the coupling strength c. A
three-dimensional plot of the spectral amplification factor �
is shown in Fig. 1�a�. From Fig. 1�a�, it is seen that the
amplification factor � is a nonmonotonic function of diver-

*wud@suda.edu.cn
†szhu@suda.edu.cn

PHYSICAL REVIEW E 79, 051104 �2009�

1539-3755/2009/79�5�/051104�4� ©2009 The American Physical Society051104-1

http://dx.doi.org/10.1103/PhysRevE.79.051104


sity �. There exists an optimal value of �, which is the char-
acteristic signature of stochastic resonance. There also exists
an optimal coupling strength c, which is the main results of
AESR �7�. � is plotted in Fig. 1�b� as a function of log10�c�
when � is varied. From Fig. 1�b�, it is clear that the optimal
value is shifted to a large value of the coupling strength c
when the diversity � is increased. The mechanism can be
understood as follows. In the homogeneous case, that is ai
=0, the subthreshold forcing cannot overcome the potential
barrier for any of them. As the diversity increases, a number
of elements with certain value of ai are able to overcome the
potential barrier with the help of external forcing. The cou-
pling between the elements can help these elements to pull
the other elements and produce a collective, macroscopic
movement. However, if the coupling is too strong, the sys-
tem becomes globally synchronized. The coupled system
may behave as a single element. The typical effect of array-
enhanced resonance disappears �7,8�. There exists an optimal
coupling strength. For too large diversity, some of the ele-
ments pulled by diversity offer too much resistance to follow
the external force. Larger coupling strength is needed for the
favorable elements to overcome the resistant effects. There-
fore, the optimal value of � is shifted to a large value of the
coupling strength c when the diversity � is increased.

When the correlation length � is small, the spectral am-
plification factor � is plotted in Fig. 2 as a function of the
diversity � and the correlation length �. A three-dimensional
plot of � is shown in Fig. 2�a�. It is found that the amplifi-
cation factor � is a nonmonotonic function of diversity �.
The maximum value of ���max� as a function of � is plotted
in Fig. 2�b�. When � is increased, �max decreases almost

linearly with �. That is, the increase of the correlation length
� can reduce the height of �. The optimal value �opt corre-
sponding to �max as a function of � is plotted in Fig. 2�c�.
From Fig. 2�c�, it is seen that �opt increases almost linearly as
� increases. That is, the position of the peak shifts to a larger
value of � when the correlation length is increased. It means
that the correlation between the diversity may reduce the
resonant effect that is induced by diversity. Thus the maxi-
mum value of � is decreased and a larger diversity is needed
to overcome the passive effects induced by the correlation �.

The spectral amplification factor � is plotted in Fig. 3 as a
function of the diversity � and the correlation length � when
the correlation length � is very large. It is found that the
amplification factor � is decreased monotonically as a func-
tion of the diversity �. The value of � does not change very
much when � is increased. That is to say, when the correla-
tion between the diversity is very large, the signature of sto-
chastic resonance disappears.

It is well known that coupled oscillators are able to syn-
chronize. When the short-range spatial diversity is consid-
ered, the synchronization behavior can be investigated by the
mean-square deviation �16�. Comparing Figs. 2 and 3 to Fig.
1, it is found that the effect of the correlation length � on the
resonant behavior is different to that of the coupling strength
c. The resonance phenomena show the temporal order of the
system output �17�. In order to investigate the spatial order of
the system, the degree of spatial synchronization can be cal-
culated �17�. The cooperative effects caused by the diversity
�, the correlation length �, and the coupling strength c on the
spatial synchronization need to be investigated. To character-
ize the synchronization, the mean-square deviation can be
calculated �16�

FIG. 1. Spectral amplification factor � of the coupled bistable
system is plotted as a function of the diversity � and the coupling
strength c. The parameters are chosen as N=1000, A=0.2, T=103,
and �=1. �a� Three-dimensional plot of �. �b� � is plotted as a
function of log10�c�.

FIG. 2. �a� Spectral amplifica-
tion factor � of the coupled
bistable system is plotted as a
function of the diversity � and the
correlation length � between the
diversity. �b� The maximum value
of �max is plotted as a function of
�. �c� The optimal value of �opt is
plotted as a function of �. The pa-
rameters are chosen as N=1000,
A=0.2, T=103, and c=1.

FIG. 3. Spectral amplification factor � of the coupled bistable
system is plotted as a function of the diversity � and the correlation
length � when � is very large.
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�2 =
1

N��
i=1

N

�xi�t� − �x��2
t

, �4�

where �x� denotes an average over the elements of the array
and refers to �x�= 1

N�i=1
N xi�t� while �. . .�t denotes an average

over time. Large � represents large deviations between vari-
ous oscillators and small � denotes strong collective motion
and, consequently, better synchronization. Extremely, �=0
demonstrates complete synchronization �17,18�.

The mean-square deviation � as a function of the corre-
lation length � and the coupling strength c is plotted in Fig.
4. In Fig. 4�a�, � is plotted as a function of � for different
values of diversity �. It is found that � always decreases
monotonically as � increases, which means the spatial syn-
chronization is improved due to the correlation between the
diversity. It is easier for the system with small diversity to
reach complete synchronization with the help of the correla-
tion between the diversity. In Fig. 4�b�, � is plotted as a
function of c for different values of �. It is found that the
spatial synchronization is improved due to the coupling be-
tween the oscillators. The correlation between the diversity
may reinforce the synchronization.

From the above discussions, it is seen that the diversity-
induced resonance and the spatial synchronization appear for
different parameter regimes in coupled bistable oscillators
with correlated diversity. For small correlation length �, the
diversity-induced resonance appears while the synchroniza-
tion in the system is quite poor. For large correlation length
�, the diversity-induced resonance may disappear while the
synchronization is enhanced and complete synchronization
may occur. That is, the correlation length � has opposite
effect on diversity resonance and the synchronization. For
suitable value of the coupling c, both the diversity-induced
resonance and the synchronization may occur. These phe-
nomena may be enhanced by increasing the coupling c.

IV. DISCUSSION

The phenomena of diversity-induced resonance in a
coupled bistable oscillators are investigated when there ex-
ists mutual correlation in the diversity parameter. The effects
of coupling c between oscillators and the correlation length �

between the diversity on the resonant response of the system
are discussed. It is found that increasing the correlation
length � can reduce the resonance. While increasing the cou-
pling c between oscillators can enhance the resonance. The
signature of stochastic resonance even disappears when the
correlation length between the diversity is very large. Both
the coupling between oscillators and the correlation between
the diversity can enhance the spatial synchronization of the
system. Our findings may be of importance to speculate the
amount of diversity and the correlation between diversity
present in some neurobiology system, such as the FitzHugh-
Nagumo model �9�, the Hindmarsh-Rose �HR� model �19�,
the Hodgkin-Huxley model �20,21�, and the Morris-Lecar
model �22�, etc.
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APPENDIX

The actual algorithm for the generation of the correlated
variables is presented as follows. In the 	-Fourier space, the
correlation of Eq. �2� reads �23,24�

�a�	�a�	��� = 2�g�	�
�	 + 	�� , �A1�

where a�	�, a�	��, and g�	� are the Fourier transforms of ai,
aj, and gi, respectively. The motion will take place in a one-
dimensional space discretized in N cells of size �L. Every
one of these intervals will be denoted by a Roman index in
real space and by a Greek index in Fourier space. So the
discrete Fourier version of Eq. �A1� is given by

�a�	��a�	��
� �� = N�Lg�	��
�+��,0. �A2�

Then the noise in the Fourier space can be constructed as

a�	�� = �N�Lg�	���	��, �� = 0, . . . ,N − 1� ,

FIG. 5. The correlation function g�n� /g�0� of spatial disorder is
plotted as a function of n for different values of correlation length
�. Solid lines are theoretical results and the symbols are numerical
calculations with �=4��� ,8��� ,12���.

FIG. 4. �a� The mean-square deviation � as a function of the
correlation length � for different values of diversity �. The param-
eters are chosen as N=1000, A=0.2, T=103, and c=1. �b� The
mean-square deviation � as a function of the coupling strength c for
different values of �. The parameters are chosen as N=1000, A
=0.2, T=103, and �=0.5.
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a�	0� = a�	N�, 	� =
2��

N�L
, �A3�

where �	���� are Gaussian random numbers with zero
mean and correlation

���� = 
�+�,0, �A4�

� is a complex variable and can be constructed as �=b�

+ id�, and b� and d� represent Gaussian random numbers
with zero mean and variances

�b0
2� = 1, �d0

2� = 0,

�b�
2 � = �d�

2 � =
1

2
, �� = 1,2, . . . ,N − 1� . �A5�

The discrete inverse transform of a�	�� is then numeri-
cally calculated by a fast Fourier transform algorithm. Thus,
a string of N numbers ai is generated.

In order to check the suitability of the procedure, the cor-
relation of Eq. �2� is numerically evaluated by

g�n� =��i=0

N0 ai+nai

N0 + 1
 , �n = 0,1,2, . . .� , �A6�

where the number of the network is N=222 and N0=N /4 and
�L=0.01 are used in the simulation.

To check the algorithm for the generation of the random
numbers, the numerical results and the theoretical predic-
tions of the spatial correlation function g�n� /g�0� against n
for different values of the correlation length � are plotted in
Fig. 5. The lines are theoretical predictions of Eq. �3� while
the symbols are numerical results. For very large values of �,
there is a small amount of deviations between numerical
computations and theoretical results when n is very large.
This deviation is mainly caused by the periodic boundary
conditions in the process of the discrete Fourier transform
�23�. For small and medium values of �, the numerical com-
putations are in excellent agreement with the theoretical re-
sults. From the whole shape of the curve, the numerical
simulations can still characterize the theoretical curve quite
well �1�. This assures the reliability of the numerical algo-
rithm when � is not very large.
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